Fall 2018 Math 566:17 1

Minimum Cuts in Unidrected Graphs

Recall: §(5) is the set of edges with exactly one endpoint in S and we also write u(6(S)) = 3_.c5(5) ule)-
Note: §(S) =0(V(G) \ S).

Minimum Cut Problem:
Input: Graph G = (V, E) and cost function v : E — RT. (cost for minimizing)
Output: Global Minimum Cut. That is S C V' which minimizes u((S))

1: Find a minimum cut in the following graph:

Notation:

A(G) is the cost of minimum cut of G, i.e.

AMG) = min u(e
() Q#SCV(G)eeéZ(S) ()

A(G;v,w) is the cost of minimum (v, w)-cut of G, i.e.

ANG; - |
(' U U)) vesgr‘gl(lg)\{w} 6625(;5') U(e)

2: Find an algorithm for Minimum Cut Problem using network flows.

Solution: Fix any vertex, find a maximum flow to every other vertex, and take the
minimum. This max-flow gives a globally minimum cut. Why this works?

Node Identification Algorithm:

Let Gy, be a graph obtained from G by identifying u and v (delete loops, keep parallel edges).

Main idea:

A(G) = min(A(va),)\(G;v,w)) (1>

3: Explain .
Solution: A minimum cut in G either separates u from v or does not.
How can we make A\(G;v,w) easy to calculate? By cleverly picking v and w?

A legal ordering of vertices starting at vy is v, vs,...,v, if for all 4, v; has the largest cost of edges joining
it to VlyeooyUj—1-

@®®O by Bernard Lidicky

https://creativecommons.org/licenses/by-nc-sa/4.0/

Fall 2018 Math 566:17 2

4: Find a legal ordering starting with vertex a of the graph from the first exercise (redrawn below)

Solution: a,b,c,d,e, h,g, f
Main theorem: If vq,...,v, is a legal ordering of G, then §(v,) is a minimum vy, v,—1 cut of G.

Node Identification Algorithm:

1. M := oo and A undefined

2. while G has more than 1 vertex

3. Find a legal ordering vy, vo,...,v, of G
4. If u(d(vy)) < M

5. M :=u(d(vy)) and A := 6(vy,)
6. G =Gy,

7. return A

5: Run the node identification algorithm on the graph from the previous exercise.

Solution: Many figures needed here...

@®®® by Bernard Lidicky

https://creativecommons.org/licenses/by-nc-sa/4.0/

Fall 2018 Math 566:17 3

Random Contraction Algorithm:

1. while G has more than 2 vertices
2. Choose an edge e of G with probability u(e)/u(E)
3. G = Gy, where e = vw
4. return the unique cut in G.
6: Let A be a minimum cut of an n-vertex graph G. Show that the random contraction algorithm returns A
with probability at least 2/(n(n — 1)).
What is the probability that a random cut in G is a minimum cut? (The algorithm does something.)
Solution: Let u(A) =)"..,u(A). Then
u(A)
u(E)
Notice that A is the minimum cut in G. Hence u(A) < w(C) for any other cut.

In particular, we consider cuts around each vertex. A cut around vertex v has cost
Y e 5(v) u(e). The average cost of a cut around one vertex is

266(5(@)u(€) - QZGEE u(e) B ZU(E)
n B n o
Then picking an edge from A has lower probability than picking an edge from an

P(edge of A is picked for contraction) =

average cut around a vertex
u(A) - 2u(E) 2

wE) " n-u(lE) n
After i rounds of the algorithm, G has n — i edges and we get

u(A) 2
< -
w(E) “n—i
Now the probability that no edge of A was choses is at least
n—i n—i

The algorithm is running for rounds with ¢ = 0, ..., n—2 and we get that the probability
no edge of A is ever chosen is at least
n—2 n—3 n—4 3 2 1 2
n n—-1n—-2 543 nn-1)

7: Let k € N. Show that the probability that the random contraction algorithm does not return A in one of

kn? runs is at most e2*.

Solution: We use the estimate from previous round kn? times.
9 kn? 9 kn? 5\ kn?
l— —— <|l1l1-——= < (eng) =e
n(n—1) n?

@®®O by Bernard Lidicky

https://creativecommons.org/licenses/by-nc-sa/4.0/

